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ABSTRACT
Machine Learning (ML) has become an indispensable part of sev-
eral End-User Programmers’ (EUPs) daily work, which increasingly
includes software engineering tasks. Machine Learning End-User
Programmers (ML-EUPs) without the right background face a steep
learning curve and an increased risk of errors and bugs in their ML
models. In this work, we designed a conversational agent named
“Newton” that can act as a 24/7 expert to support ML-EUPs. The
design of Newton was informed by reviewing the existing literature
and identifying six challenges that ML-EUPs face and five strate-
gies to help them. We evaluated Newton’s design by conducting a
Wizard of Oz within-subjects study with 12 ML-EUPs. We found
that Newton proved to help support the ML-EUPs, irrespective of
whether participants finished their tasks or not. Still, Newton’s de-
sign, which featured the identified strategies, effectively mitigated
the challenges from the literature. Based on participants’ interac-
tions with Newton, we proposed six design guidelines for future
conversational agents in this domain.

CCS CONCEPTS
• Computing methodologies→Machine learning; • Human-
centered computing → Human computer interaction (HCI).
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1 INTRODUCTION
Machine learning (ML) has becomewidespread in research and com-
mercial software development. For example, ML drives data-driven
user experience and decision-making in both software research
and development, as evidenced by the dedicated research topics at
ICSE’2024. ML is used to analyze patterns in large datasets and lies
at the intersection of computer science, mathematics, and statistics
[9, 13, 15, 19, 43]. A broad spectrum of businesses has embraced
ML, and its adoption has been growing each year [9]. ML has also
caught the interest of business leaders, governments, and the gen-
eral public [15, 43]. This has resulted in a large class of users who
use ML for their work or to improve their careers, whom we term
ML End-User Programmers (ML-EUP).

Understanding the workings of ML models requires a thorough
comprehension of programming and mathematical concepts such
as linear algebra and probability, which can be challenging for
ML-EUPs without a strong background [6, 18, 22, 27–30, 32, 34, 46].

Empirical studies have reported challenges ML-EUPs face when
developing ML software. For example, Martínez-Fernández et al.
[29] reported that not having end-to-end pipeline support can
be challenging, especially when deciding which algorithm to use
[8, 18, 37]. Similarly, understanding what the ML model has done
and why and evaluating whether the prediction is correct is difficult
[13]. Even experienced ML-EUPs encounter challenges when work-
ing with complex datasets or novel problems and need to invest
considerable time and effort to refine and process the input to create
and execute the models [4, 13].

Therefore, it is challenging to start using ML, as it involves exten-
sive time and effort from ML-EUPs [6, 44]. In software engineering,
ML models are used to detect bugs, perform code repair, and facili-
tate DevOps, to name a few applications [21, 41]. As more and more
software development tasks depend on ML, a larger population of
software engineers are using ML in their daily tasks. Incorrect ML
models can lead to inefficiencies and errors [4]. While automating
parts of the ML pipeline can help, the large variety of ML-EUPs
with varying levels of experience makes it difficult to serve the
needs of all users (i.e., solutions for advanced users do not match
the needs of ML novices) [13].

Researchers recommend learning from an expert while collabo-
rating on a task as a strategy to overcome challenges [13, 16, 18].
However, not all ML-EUPs have access to ML experts, and many
ML experts do not have the time to teach ML novices.
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Figure 1: Study Overview

To bridge this gap, in this paper, we explore how a conversational
agent can serve the role of an expert and scaffold ML-EUPs in their
tasks. To role-play as an expert, the agent needs to give advice
tailored to the specific task and explainwhat eachML action is doing
when asked. This would enable individuals without ML expertise or
a solid background to receive contextualized guidance as needed.

To create an effective conversational agent, the first key step
is to comprehensively understand ML-EUPs’ challenges, needs,
and interaction patterns. Thus far, to the best of our knowledge,
no research has investigated the use of conversational agents to
support ML-EUPs in completing ML tasks, and there is a lack of
guidance on how to design such conversational agents. In this sense,
this paper seeks to answer: How a conversational agent can support
ML-EUPs?

Toward this goal, we followed a systematic approach to design
such a conversational agent to assist ML-EUP (see Figure 1). In
Phase 1, we determined the key challenges (and recommended
solutions) researchers have identified for ML users. We reviewed
existing work discussing the challenges in using ML, which we
qualitatively analyzed using open coding and negotiated agree-
ment. In Phase 2, we designed a conversational agent (Newton)
to incorporate the recommended solutions as a plugin for Python
Jupyter lab. In Phase 3, we conducted a Wizard of Oz (WoZ) lab
study. In WoZ, human experts simulate all or parts of the system
responses. The WoZ method offers a cost-effective, flexible, and
user-centered approach to system design and evaluation when the
technology is not evolved enough to provide the desired behav-
ior [12, 14]. The experiment was designed as a counterbalanced,
within-subjects study, where participants were asked to solve a
classification problem. The classification problems were selected
from two Kaggle competitions. In the Experimental group, partici-
pants used Newton; in the Control group, they could use any online
resources they found relevant. We collected the interactions with
Newton’s features/strategies that helped participants overcome
challenges in building their ML model.

Our findings show that fewer participants faced challenges when
using Newton (17% as compared to 58%). We found that features
such as decomposing into a set of steps and presenting them as

dynamic checklists, generating code snippets, and providing help
through predetermined help buttons, on-demand documentation,
and chat responses are helpful in successful task completion. How-
ever, in some cases, these features backfired when participants got
impatient and tinkered around while waiting for the agent’s reply,
which resulted in out-of-context responses. Based on these findings,
we also derived a set of 6 design guidelines for conversational agents
that scaffold software development for ML-EUPs.

2 CHALLENGES AND STRATEGIES IN
ADOPTING ML

As a first step to designing the conversational agent, we reviewed
the literature to identify the challenges that ML-EUPs face when
applying ML and recommended strategies. The process was con-
ducted by the first three researchers. We surveyed IEEExplore and
ACM digital libraries using the following set of keywords related to
the phenomenon under research: “Challenges in Machine Learning,”
“Challenges in applyingMachine Learning,” “Challenges inMachine
Learning for Software Engineers,” and “Challenges and Strategies
for learning ML.” Our initial search gave us 47 publications.

We filtered out papers with fewer than eight pages because
havingmore than eight pages is a typical requirement for full papers
[45]. Then, based on reviewed abstracts and titles, we filtered out
publications that did not explicitly focus on investigating challenges
and strategies in learning and using ML. Finally, we selected eight
papers and then performed an iteration of backward snowballing
as suggested by Wohlin [47], resulting in eight additional papers.
Our final list was composed of 16 papers.

To identify the challenges in ML, the same three researchers
independently analyzed the papers following the open coding pro-
tocol [17]. We held weekly meetings to present our findings and
discuss the challenges until reaching an agreement. In the first open
coding iteration, we extracted 34 challenges from the papers. After
the meetings, we agreed on classifying them into ten categories
of challenges. We then filtered out four challenges as these were
not focused on challenges faced by ML-EUPs when starting to use
ML, namely: ethics, different disciplines, project management, and
security. The final categorization considered challenges that could
be implemented as a single conversational agent, and consisted of
six challenges that are described below.

2.1 Challenges in Using ML
These challenges are further divided into two groups. The first, over-
arching challenges, include three challenges that occur through
different stages of using ML: decision-making, programming, and
explainability. The second, pipeline-specific challenges, refer to spe-
cific steps of the ML pipeline, including: data wrangling, modeling,
and quality evaluation.

C1. Decision-Making is challenging because developing a ML
model requires a slew of decisions that extend beyond programming
expertise. For instance, users must decide which algorithm to use,
what hyperparameters to tune, and how to preprocess/clean data
before training ML models [8, 18, 37].

C2. Programming is challenging since ML modeling differs
from traditional software development [8]. This is because the per-
formance of eachmodel highly depends on the quality, quantity, and
variability of data [3, 4, 8, 18, 37]. For example, feature engineering
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in ML can be challenging when data is high-dimensional, noisy, and
unstructured, which may require particular programming expertise
such as deletions, additions, combinations, or mutations [22, 28].

C3. Explainability poses a challenge for large and compli-
cated models, especially for users who lack background knowl-
edge/expertise [6, 44]. ML models are complicated to understand
because these are often used as black-boxes, with users only tuning
the parameters to optimize the model’s performance on a specific
task. This black-box nature makes it hard for ML-EUPs to under-
stand why the model did what it did and how to interpret the results
[18, 27, 28].

C4. Data Wrangling is one of the first steps in ML pipeline and
can be challenging due to the uncertainty in input data preparation.
Lacking knowledge of data cleaning and preprocessing steps during
data-wrangling can be challenging, complex, and difficult due to
the variability of the data [4, 8, 27]. Reviewed studies also agree
that a lack of preparation and manipulation before training a model
is a major pain point [13, 18, 22, 28, 29, 37].

C5. Modeling can be challenging for end users as it requires un-
derstanding how to build the model and involves various decisions
(crosscuts C1), such as capturing relevant variables and using the
right functions [32]. If model development is not performed well,
it can cause overfitting giving incorrect or poor predictions [13].
Modeling is also tied with programming (C2), since it requires or-
chestrating different functions together, with the right number of
parameters and dependencies across functions [13].

C6. Quality of Evaluation. Understanding the quality of the
evaluation requires users to understand how the model was trained,
tested, and measured [6, 13, 28, 37]. ML-EUPs may have unrealistic
expectations of the model’s performance, such as expecting 100%
accuracy. It can be challenging for these ML-EUPs to accept the
imperfections of ML models, leading to disappointment, distrust,
and frustration [18, 32, 44].

2.2 Recommended Strategies
Next, we reviewed the 16 publications to identify their recom-
mended strategies for addressing these challenges. We identified
five strategies, three of which are related to guidance and docu-
mentation (S1, S2, S3). The other two referred to technical and
efficiency optimization (S4, S5).

S1. Using Checklists is a strategy for guiding users through
their decisions (C1) while training ML Models. Checklists can also
ensure particular ML stages are not skipped or overlooked [13].
For example, a detailed checklist of steps can provide conceptual
tutorials and examples beyond conventional API documentation
that can serve as a reference book for engineers to troubleshoot
issues and optimize performance [6, 8, 37].

S2. 24/7 Expert Availability can mitigate the following chal-
lenges: (1) Data wrangling (C4): an expert can provide valuable
and instructive insights into data extraction and pre-processing [8];
(2) Explainability (C3), experts can help interpret the output and
guide ML-EUPs to understand the background working of ML mod-
els [8, 13]; and (3) Quality of evaluation (C6), an expert can help
users validate, assess the results, and guide them tuning ML models
appropriately to optimize performance [8]. Although, having 24/7
availability to an expert can mitigate these challenges, such access
to an expert in real-life is infeasible.

S3. On-hand API Documentation that is provided in the same
page as the editor can help in data wrangling (C4), decision-making
(C1), and explainability (C3). On-hand documentation reduces the
need for context switching and can be more efficient. Documen-
tation can help ML-EUPs understand the data formatting require-
ments (e.g., a need for continuous and factorized variables) for
specific ML models [8] and how to transform data into such for-
mats. Documentation can provide details of different ML models
regarding their computational complexity, accuracy, and context of
use, which can help ML-EUPs select appropriate functions and al-
gorithms [8]. Finally, documentation can improve explainability by
explaining the meaning of different metrics/results (e.g., F1, Recall,
ROC). Technical documentation that discusses the mathematical
foundation and mathematical solution samples can help users with
the appropriate background understand the different models and
the approaches to optimize model performance [27].

S4. Code generation can mitigate challenges in data wrangling
(C4) and programming (C2). Code generators can contribute to
better programming practices by generating code that adheres to
established standards for reproducibility and maintainability (e.g.,
including comments within the code)[28, 48]. Studies have shown
that using code generators can enhance the overall quality of ML
projects and contribute to their success [28, 48].

S5. Automated Features that automate parts of the ML pipeline
can alleviate challenges related to programming (C2) and quality of
evaluation (C6). Automation can be useful in reducing the amount
of programming necessary for data preprocessing or feature engi-
neering. This is achieved by automated default data preprocessing
or feature engineering, as noted in L’heureux et al. [28]. Automated
features can also play a vital role in identifying significant char-
acteristics from raw data, which can be time-consuming when
coding manually, as highlighted in L’heureux et al. [28], Martínez-
Fernández et al. [29]. By automatically identifying relevant features
from raw data to be used in the model, automated features can
help instill confidence in the output and reduce the potential for
human-introduced errors or biases [18].

3 CONVERSATIONAL AGENT: NEWTON
In this section, we present the design of a conversational agent that
supports the strategies described in Section 2.2. We chose to design
a conversation agent, Newton, to support the selected strategies, as
it can offer expert advice 24/7, can be adapted to different platforms,
and integrates development environments as an extension (i.e.,
plugin) [12]. Additionally, conversational agents have also been
effectively used in the field of education to support novices [25].

Newton was conceived as a plugin for Jupyter Lab [20]—an
interactive computational notebook widely used by ML-EUPs [11,
38]. Newton incorporates the selected strategies through a set of
features (Sect. 3.1). Newton also provides a wizardmode to handle
User-Newton interactions used in our WoZ experiment (Sect. 3.2).

3.1 Newton Features
S1. Dynamic checklist: Newton presents a checklist with the stages
of the ML pipeline to guide ML-EUPs. Each step is clickable to allow
ML-EUPs to interact with the agent. The checklist also includes an
option to explain the steps. A dynamic checklist, contextualized
to the task, provides a clear view of the critical steps needed [33].
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S2. 24/7 Expert availability: Cerezo et al. [10] recommend a
conversational agent to improve communication quality by giving
ML-EUP the ability to contact an expert at any time. To support
this, we incorporated three features in Newton: input text, help me
decide buttons, and three convenient ways to reply to previous
questions (text field, reply-box after a giving answer, and reply
button to highlight the question the user wants to reply to).

S3. On-hand API documentation: Newton displays documenta-
tion by (1) providing links to the methods webpage, and (2) opening
a panel in the notebook with the relevant portion of the documen-
tation. As Mehrpour et al. [31] proposed, on-hand documentation
helps ML-EUP implement code faster, learn the design behind code,
follow examples, and receive immediate feedback.

S4. Code Generation: As per Kirwan et al. [23] guidelines, Newton
provides auto-generated code associated with the different stages of
ML contextualized to the task. Newton has access to all the context
of the notebook, including existing variables in memory, previously
executed code in order of execution, and previous chat messages.
All this information is used to generate the contextualized code.

S5. Automated features: L’heureux et al. [28] posit that auto-
mated features help reduce the number of manual steps needed
by ML-EUPs by quickly providing relevant, common features. We
incorporated two automated features in Newton. The first allows
autocompleting suggestions when typing a query. The second al-
lows multiple ways of copy-pasting Newton’s provided code into a
notebook (e.g., in a cell above, in a cell below, clipboard, etc.).

3.2 Wizardmode
To incorporate WoZ support, we designed a wizardmode in which
a human expert can access and role-play as a conversational agent.
This wizardmode allows the “wizard” to access Newton’s inspection
features, reply to user queries with different types of messages,
and open side panels with custom documentation. To establish
communication with the user, the wizardmode leverages Jupyter
Lab collaborative mode, which allows different people to connect
and work on the same notebook simultaneously.

In our experiments, the wizard was the second author of this
study, with expertise in Python programming and Machine Learn-
ing. The wizard followed a script to keep consistent replies among
participants, reduce response times, and be perceived as a conver-
sational agent, as suggested by Klemmer et al. [24], Setlur and Tory
[42].

We prepared and refined the (wizard’s) script based on the two
user study tasks, which were selected from two Kaggle competi-
tions. These competitions were about creating classification models
with heart disease and heart mortality data. The outputs of the com-
petitions became the script’s core by following the steps various
competitors used to tackle the problem. Additionally, we mined
scikit-learn documentation related to the different classification
algorithms used by the competitors. This documentation contained
definitions and examples of how to use certain scikit-learn func-
tions. We tested and refined the script by sandboxing it with ten
colleagues from the authors’ research labs.

The final script [5] contained a total of 110 messages, without
counting the ones that were built into the autocomplete engine as
those were generated from scikit-learn documentation.

3.3 Newton Walkthrough
Let us consider a scenario where a ML-EUP, Danny—a professional
Python developer—wants to build a ML classification model. Fig-
ure 2 presents a snapshot of Danny’s interactions with Newton and
tags Newton features with letters (e.g., A ).

Classifier
[1]:

[1]: age anaemia creatinine_phosph

0 75.0 0

1 55.0 0

import pandas as pd

df = pd.read_csv("sample1.csv")

df.head()

scikit
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rather than regression in terms of the scikit-learn/
gression, maximum-entropy classification (MaxEn
outcomes of a single trial are modeled using a log

This implementation can fit binary, One-vs-Rest, o

Note: Regularization
Regularization is applied by default, which is com
that it improves numerical stability. No regulariz

Note: Logistic Regression as a special case of
Logistic regression is a special case of Generalize
The numerical output of the logistic regression, w

Keep
URL: https://scikit-
learn.org/stable/modules/linear_model.html#logisti
regression
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Figure 2: Newton with tagged features.

» At the beginning of the chat, Danny asked Newton to load a file
A . Newton replied to this message with the generated code to load
the file B . Most messages in the chat are responses to previous
questions. Clicking on the eye button C highlights the question
that was answered. Users can respond to an earlier question by
clicking the back-arrow button next to the question D , which can
create parallel conversations.
» Danny added the code to the notebook E using the “insert cell
at the end” button F and executed it. The user can copy the
generated code into the notebook by: copying it to the clipboard,
and clicking the option to put it directly in a new cell above, in a
new cell below, or in a new cell at the end of the notebook.
»After the execution, Danny askedNewton how to create a classifier,
and Newton provided a list of steps to build a classifier model G .
These steps are clickable and provide paths to different flows of
dialog. They also include options such as “explain the steps,” which
can help users understand what they are doing and build confidence
in the output.
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» Danny clicked on the “Can you explain the steps?” option, sending
it to Newton as a chat message H . Newton replied with a follow-
up list, asking which step Danny wanted to know about [Not visible
in the figure]. Clicking on a button has the same effect as replying
to the message that had the button. Users can use the eye button to
see the message that was answered. Similarly, Danny could have
used the “Ask a different question” text input to reply directly to a
message and start a natural language conversation with Newton.
» In the current snapshot, Danny is using the main text field I
to find out about “regression” algorithms. He uses Newton’s au-
tocomplete J to see a list of autocomplete and the eye buttons
in the “Logistic regression” autocomplete option to load the doc-
umentation in the browser K . The auto-complete feature gives
suggestions while the user is typing in the text field. This feature can
be turned on and off based on user preference. Similarly, users can
close and open multiple documentation panels at anytime. Besides
presenting documentation through autocomplete options, Newton
can send messages with links to open documentation panels inside
the notebook.
» Danny continues to interact with Newton to build the model.

4 NEWTON EVALUATION
We evaluated Newton through a counterbalanced, within-subjects
study, where participants were asked to solve a classification prob-
lem. The following evaluation questions guided our study:Q1. How
do ML-EUPs perceive the challenges when performing a ML task?
Q2. How do ML-EUPs interact with a conversational agent to solve
a ML task? Q3. What common patterns emerge when ML-EUPs
perform ML tasks?

4.1 Method
Recruitment. We recruited computer science students via email
using a list from the university, recruiting from CS classes, and
snowballing sampling. Interested participants answered a survey
about their self-perceived confidence in Python (since Newton is a
Jupyter Lab plugin), Machine Learning, and general programming.
A total of 48 people answered the questionnaire.

Participants. From the responses, we selected 12 participants
with medium to high confidence in Python and Programming and
very low to medium confidence in ML.

Table 1: Demographics of Participants

ID Gender Education Preferred Confidence Tasks
* Language Prog. Python ML **

P1 Woman MSc [IP] Python, JS, C++ High High Low C E

P2 Man MSc [IP] C, CPP, Python, C# High High Low E C

P3 Man MSc [IP] Python, C++, TS Very High Very High Medium C E

P4 Woman MSc [IP] Python, Java, C++, R Medium High Medium E C

P5 Man MSc [IP] Python, Java Medium High Low C E

P6 Man MSc [IP] Python Medium High Medium E C

P7 Man MSc [IP] Java, C, Python High High Medium C E

P8 Man MSc [IP] Java, Python, C Very High High Low C E

P9 Man Late PhD R Medium Medium Medium E C

P10 Man Bachelor JS, Python High High Medium C E

P11 Woman MSc [IP] Python High High Medium E C

P12 Woman MSc [IP] Angular, Python Medium Medium Low E C
* [IP] indicates “in progress”
** The letters indicate the use of Newton (E: experiment with Newton, C: control without it), the
colors indicate the completion (green: success), the shapes indicate the dataset used in the task, and
the tasks are in order.

Table 1 summarizes our participants’ demographics and the ex-
periment task order and completion. All participants reported hav-
ing a CS background. Ten were Master’s students, one was a Ph.D.
candidate, and one was a professional with a bachelor’s in CS. As a
token of appreciation, students received a $20 gift card, while the
professional received compensation of $50 in gift cards.

Study Protocol. Once the participants were selected, we emailed
the informed consent document. The studies were conducted re-
motely and followed the university IRB protocol. The experiment
sessions were recorded with the participant’s consent and lasted
around 70 minutes each.

The sessions consisted of two classification tasks to be performed
with and without Newton in a within-subjects design, a question-
naire after each task, and a post-study questionnaire. We defined
the classification problems based on two Kaggle competition scripts
(see section 3.2). Moreover, we made small non-breaking changes
to the datasets to ensure both tasks were equivalent, had the same
complexity, and could be completed within 25 minutes. For instance,
the categorical columns of the heart mortality dataset were origi-
nally encoded as numeric columns with 0 and 1. We changed these
values to N and Y to match the notation in the heart disease dataset,
which requires an explicit encoding step.

We counterbalanced the tasks, as we show in the tasks column
in Table 1. Half of the participants started the experiment with
the heart mortality dataset (represented as a circle), and the other
half started with the heart disease dataset (represented as a square).
This counterbalancing also considered the division of control and
experiment tasks, represented by the letters C (control—without
Newton) and E (experiment—with Newton) in the table. After each
task, participants answered questions regarding challenges they
faced in completing the task, about the task, and interactions with
Newton (in the Experimental condition).

Each task was time-boxed to 25 minutes to allow participants to
complete both treatments; in both tasks, participants were asked to
think aloud. The Control participants could use any online tools or
help to complete the task. For the Experimental task, we introduced
Newton to the participants. To familiarize them with Newton, we
showed them its different features and let them practice with a
warm-up task (e.g., asking Newton to plot a normal distribution).
After completing the warm-up, the participants started the task.
Participants were asked to only use Newton.

Analysis. To analyze the results, three authors qualitatively an-
alyzed (open coding) Newton’s log messages and identified five
categories of user-agent interactions: (a) Newton Hint: the features
in which Newton displays a hint (i.e., auto-complete messages,
and documentation panels), (b) Enacted Suggestion: interactions in
which the participant clicked on a suggestion given by Newton, (c)
Newton Reply: Newton messages in the chat, including the ones
that contain text, options, forms, and code suggestions, (d) User
Input, and (e) Submission of form elements by participants.

Using these categories, we analyzed the pattern of user-agent
interactions to understand how ML-EUPs would interact with a
conversational agent when building a ML model. The audio files of
the study sessions were transcribed by the first and third authors
and analyzed using an inductive, open coding process. First, we
assigned a code to the different patterns the participants applied
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during the study (e.g., how the participants interacted with New-
ton, did they use one feature more than others?). These were then
merged or split as necessary to denote descriptive interaction types.

Next, we analyzed the different answers to each task.We grouped
similar responses to identify more in-depth interactions between
the participants and Newton. We also used the questionnaires to
verify if the challenges were reduced while using Newton.

4.2 Results
The study’s primary goal was not task completion but rather to ob-
serve how participants interacted with the tasks and how Newton’s
features helped participants in their tasks. Participants were asked
to rate the tasks on a Likert scale from very bad (1) to very good (5);
All participants rated the tasks as 3 or above, indicating that they
generally thought the tasks were good, despite some participants
not being able to finish them.

Participants who completed the task without Newton also com-
pleted the task with Newton: P1, P2, P3, P10. Two participants could
not finish the task in the Control condition, but could do so with
Newton (P4, P7). Finally, six participants could not complete the
task in either condition (P5, P6, P8, P9, P11, P12).

In the following section, we present participants’ perceptions
of challenges across both conditions (with and without Newton),
categorized based on the challenges identified in Section 2.1. Next,
we showwhich of Newton’s features were useful inmitigating those
challenges, from which we derive a set of design guidelines (DG).
Finally, we describe some common patterns among the participants
when performing the tasks.
4.2.1 Q1. How doML-EUPs perceive the challenges? Figure 3 presents
the post-task questionnaire responses about participants’ percep-
tion of challenges (with and without Newton).

The results of the Control condition show that, except for Pro-
gramming, more participants in the Control condition found the
different aspects of ML modeling challenging. For Programming,
participants were split with 33% on either side (challenging vs. not
challenging). This could be because participants were confident
in programming in Python (see Table 1). This is in line with ex-
isting studies [4, 8, 27] that shows ML-EUPs need better support
to help them face challenges related to Data Wrangling (reported
as very/strongly challenging by 42% of the participants), Decision
Making (50%), Explainability (42%), and Quality of Evaluation (50%).

In contrast, when using Newton, very few participants’ perceived
the ML steps as challenging. Interestingly, the fact that people did
not finish the task did not impact these results. This suggests that
incorporating the strategies identified in Section 2.2 in a conversa-
tional agent helps reduce the perception of challenges by ML-EUPs.

Number of Responses

Newton
ControlData Wrangling 17%

8%
25%

8%
42%

33%
17%

50%

Number of Responses

Newton
ControlDecision Making 17%

8%
33%

17%
33%

33%
8%

42%
8%

Number of Responses

Newton
ControlExplainability 25%

8%
17%

25%
42%

42%
17%

25%

Number of Responses

Newton
ControlQuality of Evaluation 17%

8%
33%

17%
25%

33%
25%

42%

Newton
ControlProgramming 8%

17%
25% 25%

25%
33%

58%
8%

strongly challenging very neutral not very not challenging at all

Figure 3: Challenges perception

In addition to filling out the Likert scale questions about the
challenges, participants could also report other challenges they
experienced through open-text responses.

Four participants indicated experiencing other challenges during
the task without Newton, which we grouped into two categories.

Feeling overwhelmed: This challenge corresponds to users being
overwhelmed with the amount of information that is available
online and the difficulty in finding the right resource to build the
model. P7, P9, and P12 experienced this challenge. P12 mentioned:
“. . . too consuming to search for data and understand stuff since too
many options.” P9 experienced similar issues: “infinite recursive
googling for syntax or function using [model parameter].”

Feeling inadequate: P1 and P5 reported potential issues with
self-confidence while developing the model. For example, P1 said:
“I would also add that I felt low confidence. I wasn’t super sure what I
was doing but I tried to fill my knowledge gaps by looking up tutorials.”
Similarly, P5, who stayed on the same step (loading data) and after
trying different methods for a long time, expressed their frustration:
“I had an issue in loading the dataset. I don’t know why!.”

Only one participant reported an additional challenge (P1) for
the Experimental condition (with Newton). They mentioned their
lack of self-confidence when working on their task “I think the only
other challenge was again low self-confidence. Newton helped me
figure out the series of steps I should take to build the model, but I
was still unsure of how to correctly interpret the results . . . .”
4.2.2 Q2. How do ML-EUPs interact with the different features of
Newton? Here we analyze how participants interacted with the
different Newton features, which serves as an evaluation of the
strategies identified from the literature as discussed in Section 2.2.
Figure 4 presents a visual overview of the different interactions
participants had with Newton. We will use this figure to guide our
analysis of participants’ interaction patterns.

We first discuss the features that incorporate strategies related
to guidance (S1, S2, S3). Then, we discuss the ones that refer to
technical and efficiency optimization (S4, S5).

S1 - Checklist. All participants trusted Newton at some point. P1
trusted completely and completed the task without spending effort
trying to figure out the next steps. As P1 indicated, “the ability to
see an overview of the steps and keep clicking continue were helpful.”
P1 began the task by typing a query (orange dot in Figure 4) asking
“How to perform classification”, Newton responded by giving a list
of steps (checklist) explaining the process of building a classification
model. P1 followed all the suggestions, leading to task completion
(green dot in Figure 4). This shows that dynamic checklists can help
participants overcome decision-making challenges (C1).

However, some participants did not use Newton’s suggestions
at first. Instead, they typed their own code, refined their queries
by asking Newton to try to get different answers, or tried their
own steps. For instance, P4 began by asking queries (orange dots
in Figure 4), but rejected the suggested steps. Only after they got
errors and could not continue with the task, they started to follow
Newton’s recommendations (region Figure 4:r4b) which helped
them to complete the task. On the contrary, P5 did not heed New-
ton’s recommendations and skipped important steps by typing new
queries (Figure 4:r5b). This led P5 to errors and an unfinished task.

We realized that the agent (wizard) needs to reiterate prior steps
if a user gets stuck in a step or faces an error. For instance, Newton
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Figure 4: Participants’ interactions with Newton. Each participant interaction is represented as a dot in a specific color (e.g.,
orange: creates a query; pink: help). The vertical axis in each block shows different categories of user-agent interactions (as
presented in Section 4.1). The horizontal axis indicates the order of interactions between users and Newton. The lines between
each dot indicate the interaction between the participants and Newton. Capital letters inside the dots signify a step that is
repeated. (P10 repeated steps denoted by ‘A’ consecutively). For each scenario, we mark in the graph whether the participant
successfully finished the task (P7 completed successfully, but not P9).

helped P6 to fix an execution error related to data wrangling at
the end of the split data step, but did not say that the participant
had to go through the previous checklist steps before proceeding
to the next ones. The participant kept trying to proceed with the
execution using outdated values, which led to more errors.
DG 1: Provide insights into what is currently needed when
performing a task. A conversational agent should guide the users
through the task, giving information on what happened and what
is coming next, and not rely on a dynamic checklist alone.

S2 24/7 Expert Availability. Newton provides contextualized help
to participants based on the step in the task that they were perform-
ing or having difficulty with. P5 described Newton as “an online
chatbot which helps us with coding and documentation info to clear
the doubts,” suggesting that such help is valuable to get “unstuck.”

Participants asked for contextualized help in one of two ways.
Some participants (P2, P4, P5, P6, P8, P10, P12) used help buttons,
such as “help me decide.” Others (P2, P11) preferred open-ended
text to ask for help or ask for additional information about how
to perform the steps (e.g., “How can I know that?”). For example,
during the data wrangling step (C4), P2 clicked on “why is encoding
important” suggestion (Figure 4:r2b). Only after understanding the
need for data encoding (changing categorical data to numerical) by
reviewing Newton’s response, P2 proceeded to complete this step.
After several completed steps, P2 then asked Newton “can you help
me out with some suggestions?” (Figure 4:r2b) referring to which
columns could be classified. Newton indicated that all the columns
in the dataset could work as a classifier output. The participant then

selected the column that was given for this task and kept following
Newton’s suggestions until completing the task.

On the other hand, some participants, despite having the opportu-
nity to ask Newton questions, eschewed doing so, and proceeded to
execute steps on their own. For instance, among the data-wrangling
steps, participants were expected to check for invalid zero values
and remove them if they exist (they do not exist for the user study
tasks). P12 decided to remove the zero values without checking
for validity and asked Newton for the code to do so, which New-
ton provided. The participant executed this code, which made it
impossible to correctly complete the classification task, since this
operation removed valid categories from the dataset.

When participants asked Newton how to perform a ML task,
Newton, serving as an expert, reminded participants about the
required steps. For example, P10 asked Newton to perform “data
scaling” before encoding categorical values. Newton gave P10 the
option to either proceed with the scaling for numerical columns or
encode categorical ones and scale all at once. P10 chose the latter
option and was able to complete the task.
DG 2: Evaluate the output of current steps and remind users
of missed steps based on the context of the workflow.

S3 On-hand API Documentation. Newton provides relevant doc-
umentation about ML libraries for the code it generates; taking
the user to a specific method or function call. P1 and P2 were the
most motivated to read about ML functions. P1 opened the docu-
mentation panel three times, first to read about StandardScaler
after splitting data into testing and training. The second time they



ICSE 2024, April 2024, Lisbon, Portugal Emily Arteaga Garcia, João Felipe Pimentel, Zixuan Feng, Marco Gerosa, Igor Steinmacher, and Anita Sarma

read about “Linear Regression,” and the third time – after com-
pleting the task – they wanted to understand more about the
classification_report function. Similarly, P2 opened the doc-
umentation panel twice, the first time to get insights from the
train_test_split function, and the second time to look at the
predict function. In the post-task form, P2 indicated that they
liked the “guidance when I am stuck and providing documentation
of all the things that were used in the suggested code snippet.” Other
participants (P3, P8, and P11) also used the documentation panel.

We designed NewtonWoZ to provide documentation in response
to participants’ queries or user actions. However, there were cases
where proactively providing documentation would have been use-
ful. For example, P4 faced an exception when trying to build the
model. The wizard noted the exception and found a guide (external
resource) to help. But, as per our WoZ script, the wizard had to
wait for a user action, and, in the meantime, P4 fixed the error
themselves by repeating the data-wrangling steps. In the post-task
form, P4 indicated that Newton was missing “error handling.”
DG 3: Guide users proactively. A conversational agent should
integrate output monitoring to be able to anticipate user actions.

S4 Code Generation. Auto-generated code by Newton helped
participants to reduce programming efforts (C2). As P4 stated: “it
made coding easier, write efficient code fast”. Participants P4, P6,
and P10 also pointed “code generation” as the most helpful feature
in Newton in the post-task form: “pre-written code,” “giving the
code,” “code generation,” respectively. These participants had high
confidence in Python (see Table 1), suggesting that code generation
can be useful even for experienced developers.

To reduce effort reduction and help participants avoid errors,
Newton provided the code in the right formatted structure, con-
textualized to the task, which means users could use the code as is.
The agent (wizard) had access to the notebook session to know the
variable names and types to provide the correct code. For example,
P11 used a dataframe with a different name (data) from that pro-
vided in Newton’s script (df). So, when P11 requested a code in a
subsequent step, the code had to be adjusted.

Besides contextualizing the code to the participants’ notebook
(current task), we enriched the code generation with code comments
on complex operations, and the aforementioned documentation on
all the invoked functions (S3). The goal was to help users understand
the generated code and be able to maintain it in the future.

Most participants trusted the auto-generated code and copied
it to the notebook. P1 was the only participant who changed the
code to move an import statement to the first cell — which is a
good practice according to Pimentel et al. [38]. After executing
the code, half of the participants attempted to see what happened
in the data by checking the output (P1, P2, P3, P4, P6, P10). They
did not change the code after visualizing the results, indicating
that their confidence (C6) in the results was high. Hence, we can
further enrich future code generation by also including functions
that display the output.
DG 4: Enrich code generation for understanding. The agent
should include code comments, display the results, and give the
option of accessing the documentation of generated functions to
improve the understanding of the generated code.

S5 Automated features. While code generation reduced partic-
ipants’ effort, the auto-complete features did not help. Since the

autocomplete was a pre-built Newton feature that was not con-
trolled by the wizard, the list of suggestions may not have been
presented in the best possible way, leading participants to disable
the feature. For instance, P4 and P5 only used this feature at the
beginning of the conversation (regions Figure 4:r4a and r5a), but
disabled it after a few interactions that did not lead to the solu-
tion of the problem. P11 used this feature while typing to receive
information about support vector machine classifiers, but did not
follow that path and decided to disable the function (regions Fig-
ure 4:r11a and r11b). The rest of the participants deactivated the
feature even before they started typing (“How do I close this thing”,
P8). Autocomplete turned out to be the least-used feature.

On the other hand, the copy-paste buttons were widely used.
They allowed the users to automatically paste the code into note-
book cells in the desired order. All participants widely used this
feature after receiving some code from Newton. P1 stated, “I really
liked the ability to click on a button to add the recommended code
snippets into a new cell at the bottom of the notebook for each step.”
DG 5: Contextualize auto-complete features. Auto-complete
functions need to be contextualized to the task to be useful.

4.2.3 Q3. What common patterns emerge when ML-EUPs perform
ML tasks? We analyzed participants’ interactions in both Control
and Experimental conditions to identify patterns or common be-
haviors by analyzing the video transcripts and observation logs.

(1) Backtracking: The most common interaction pattern was
backtracking. Even though the situations were different, partici-
pants returned to a previous step in both conditions.

Without Newton: participants performed backtracking by search-
ing, copy-pasting, testing, erroring, and going back to searching.
Backtracking without Newton was time-consuming for participants
as expressed by P8 “I looked frequently and referred to websites for
my solutions”. Similarly, P10, P11, and P12 searched online for code
solutions using queries like “ML classifier in Python” or “classify a
column using Python”. After getting the search results, the partici-
pants went directly to the first three pages that popped out from
the browser. From all the pages open, they just skimmed the tu-
torials trying to find keywords. Then they copied the code they
thought could work into the notebook and tested it. They repeated
this process until they encountered an error or the code showed
completely different results from the ones they wanted.

With Newton: in this case, backtracking occurred when the user
went to a previous Newton’s reply—either by replying to it directly
using the arrow icon D or enacting a suggested option by clicking
on its button G —to explore alternative paths and topics in the con-
versation. In Figure 4, backtracking usually appears as edges that
run across the different interaction nodes. With the exception of
P9, all participants had an episode of backtracking. Figure 4 shows
several examples of backtracking. It occurred when participants
took steps to read some documentation and then went back to the
ML steps. For instance, P1 and P3 opened documentation, then con-
tinued performing the next ML steps until successfully completing
the task. On the other hand, backtracking did not work as well for
some participants. For example, the interactions of participants P8
and P12 show how they had to backtrack several steps, resulting in
errors and ultimately leading to an incomplete task.
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(2) Tinkering: Another common pattern observed is when par-
ticipants tinker with many options to find or get a desired answer.
We describe how this happened in both conditions.

Without Newton: to find a desired explanation or code, some
participants (P2, P5, P6, P10, P11) tinkered on as many links as their
search result list showed. They used the open pages as a type of
external cognition of useful resources to follow. However, these
participants did not do a comprehensive review. Instead, they acted
on the first relevant information source they identified. Therefore,
some pages remained unopened, and once the participants com-
pleted the ML step they were working on, they closed all the pages
and repeated this pattern when they searched for other code func-
tions or other explanations. While this strategy worked in most
cases, in others, participants selected the wrong resource and had
to backtrack (P5, P6, P11). For instance, P11 opened several pages,
such as TensorFlow tutorials, W3schools, Thispointer tutorials, and
GitHub, in search of training code. However, after trying the code
from each page, P11 realized it was not suitable and had to refine the
search. This process was repeated twice until P11 found the desired
code, but unfortunately, they ran out of time and were unable to
complete the task. However, this behavior worked for participants
P2 and P10.

With Newton: This pattern was common when participants
received a checklist from Newton. For instance, when Newton pro-
vided a list of steps to perform classification, P2 clicked twice on the
option All on the list (Figure 4:r2a). Then, they changed their mind
before Newton’s reply and tinkered with the first option from the
checklist. By doing so, they created multiple conversation threads
since the answers from Newton occurred in the order each op-
tion was tinkered. The participant then received a slew of answers
to different questions, the participant then had trouble deciding
which one to choose. P10 also had a similar situation, where they
were impatient and clicked on other options before Newton could
respond (Figure 4:r10a). Such (mindless) tinkering in quick succes-
sion caused errors in some cases. For instance, P11 tinkered under
submission many times due to impatience, which brought errors
(submission forms were not filled correctly) and finally to a not
completion of the task. A large part of this issue can be attributed
to the WoZ study setup, where the wizard had to send the response.
Nevertheless, even in a fully automated conversation agent, mind-
less tinkering on the UI, can lead to multiple conversation threads
that might cause user confusion.
DG 6: Manage multiple conversation threads clearly A con-
versational agent should efficiently manage multiple conversation
threads and clearly show which path is currently being followed.

5 DISCUSSION
Overall, Newton proved to be helpful, irrespective of whether par-
ticipants finished their tasks or not. Our findings provide evidence
that incorporating the identified strategies as features into a con-
versational agent can help mitigate the challenges for ML-EUPs.

Challenges of ML-EUPs. The challenges the participants found
during the study align with those we found in the literature. For
instance, P7, P9, and P12 found themselves in a loop, searching for
the perfect outcome. This loop challenge is very similar to the ones
mentioned in this study, such as explainability C3 and quality of
evaluation C6 (P12 when asked Besides these challenges, did you

find others? If yes, please describe: “ (. . . ) consuming to search for
data and understand stuff since toomany options”). This triangulation
between the types of challenges found in the literature and those
found during the study can provide a foundation and motivation
for finding strategies that can help mitigate these challenges.

All challenges, except for programming, could be mitigated using
the Newton features. Although only half of our participants were
able to finish the task usingNewton, all participants foundNewton’s
features helpful and expressed confidence in the responses. P1
stated: “I think for me I’m still in the beginner stage of looking up
tutorials and trying things out, but I liked having the support of
Newton right there in the notebook. I felt like at least I could rely
on Newton’s answers a bit more than more random answers off the
internet, which is what I use for doing other ML-related tasks . . . .”

Participants who could not complete the task without Newton
made progress by at least taking one step forward with the help
of Newton. For example, P5, who had Medium programming ex-
perience, and low ML knowledge, could not finish even the first
step without Newton (data loading). But with Newton’s help, P5
progressed to data wrangling and mentioned “I had a lot of choices
and saw things I didn’t know. On the other hand, P6, with medium
experience in programming and ML mentioned “Newton helped me.
From scratch, I was unable to perform the classification using my
own resources, but with Newton, it was a lot easier.” Note, P6, started
with Newton and then moved to without-Newton condition, so any
learning effects that might have occurred would have transferred
to the Control condition.

Social characteristics of a conversational agent. A conversation is
a social act, and a conversational agent’s design needs to encode
social characteristics. Chaves and Gerosa [12] elicit characteris-
tics related to conversational intelligence, social intelligence, and
personification to enrich the human-conversational-agent interac-
tion. We attempted to include several of these characteristics in our
experiment design and execution.

We personified the agent by calling it Newton and writing an-
swers as a knowledgeable expert that adapts their writing to how
the user interacts with it. For example, when the user sent a query
with a greeting, Newton replied with a variation of the planned
answer to include a personalized greeting. When the user sent in-
formal messages, Newton adjusted its tone to use contractions and
appropriate slang (e.g., “Got it”). These characteristics are related
to the social intelligence of an agent.

We planned Newton’s script by considering human conversation
tone: all buttons were designed as replies that humans would give
in a normal chat. For instance, the button for users to ask for help
is labeled “Can you explain the steps?”, and when the user clicks it,
it shows up as a new message.

We also applied conversational intelligence characteristics to
Newton’s responses. In situations where the participant typed a
confusing question, Newton rephrased the question and asked if the
expressed intention was correct. In other situations in which the
message was completely out of the scope of ML and programming,
Newton managed the users’ expectations by indicating that the
specific subject was not in its database.

Despite our efforts, there is still room for improvement. First,
multiple participants had an exception when they were applying
some algorithms because their datasets had categorical variables
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as strings, and the algorithms required numeric variables. In these
cases, Newton waited for the participant to interact (e.g., ask for
help, send a query, click on a different button). A better solution
would be to identify the exception from a catalog of known excep-
tions, and proactively send a message to warn the user.

Second, owing to the nature of WoZ, we had to deal with unex-
pected situations, and Newton lacked the knowledge to respond.
In many situations, the wizard attempted to reply to unexpected
questions by drafting responses in real time. Because of this, partic-
ipants got impatient with the delay and started clicking on other
buttons and typing new questions. According to Nielsen [35], the
limit for keeping the user’s attention focused on the dialogue is ap-
proximately 10 seconds. In a WoZ study, crafting human responses
within this time is difficult to achieve in unexpected situations. We
attempted to mitigate this problem by activating a loading icon
when the message preparation was taking too long, but it was not
enough, as users got impatient. In a fully automated conversation
agent, the response time will not be an issue.

Finally, Newton also had limitations in keeping multiple conver-
sations on track. The possibility of backtracking and replying to
previous messages made some interactions with Newton confusing
and intertwined. For instance, P2 wanted to advance on a task when
he mistakenly clicked on the help button of a previous checklist,
leading to an unhelpful reply from Newton (for the task at hand),
instead of advancing to the next task.

Integrating existing Generative AI agents into Newton. The recent
advances in Generative AI [1, 7, 36] that are trained on Large Lan-
guage Models (e.g., GPT-4, LLaMA, PaLM) can be incorporated into
Newton to facilitate natural language conversation with users. We
plan to have Newton’s UI as the way to interact with the user in
the notebook environment, and the backend would be in charge of
generating the right prompts to get the most appropriate outputs
from generative AI. Newton would serve as a mediator, receiving
the queries, creating the prompts automatically, and returning the
information to the user.

Preliminary tests on GPT-4 from OpenAI indicate that strategies
and guidelines related to code generation and documentation can be
implemented with one-shot prompting [39]. For instance, we were
consistently able to ask GPT-4 to enrich Newton’s code generation
(DG 4) by generating a parseable list of all functions in the generated
code, adding code comments, and including functions that display
the results. However, one-shot prompting is insufficient in creating
an agent that provides step-by-step guidance for full ML workflow
or in giving insights on what is needed next (DG 1). Few-shot
prompting shows potential for some workflows, but we hit the 8,096
token limit in our attempts, as the generative AI needs extensive
prior information to produce the desired answer.

As a workaround for this issue, we propose to use Newton to
decompose the ML workflow for a task into smaller sets of steps
(the way we did it in our WoZ script (see Section 3.2)). Newton
could then act as a dialogue management system [26, 40] using
the generative AI to interpret user intentions that are expressed in
natural language.

Similarly, providing full contextualized support with proactive
help (DG2, DG3) would require an additional management system
to trigger the generative AI for specific user actions, with plans on
what to observe and how to build the prompt with the context.

Finally, a drawback in the use of current generative AI is the
possibility of hallucinations [2] (i.e., the AI provides an incorrect
answer, but makes it sound correct so people believe it). This could
be minimized by an implementation of a dialogue management
system that covers most concepts in the usual workflow, but only
fallbacks to answers from the generative AI for explanations that
are not planned.

6 THREATS TO VALIDITY
All studies have risks, we have taken steps to minimize them and
will describe them in detail below.
Construct validity: We acknowledge that the literature review
process may have been affected by selection bias—the literature may
only reflect some relevant work—and publication bias—positive re-
sults are more likely to be published. This may lead to an inaccurate
understanding of the phenomena. To address these challenges, we
piloted the queries and discussed all the steps of the analysis as a
group through a negotiated consensus protocol.

We acknowledge another potential threat which is the possibility
of participants misinterpreting the questions in the questionnaires.
To minimize this potential issue, we piloted the questionnaires with
developers of varying levels of expertise before administering them
to the study participants.

Exhaustion and distraction may have affected theWoZ in remote
settings. To minimize it, each session lasted at most 70 minutes.
We also made an effort to reduce disruptions by giving developers
(through the virtual machine testing environment) and facilitators
(via the wizards) undisturbed simulated settings (Newton).
External validity: Our study was structured using Python and
Jupyter Lab, the most commonly used tools in data science and
machine learning. Therefore, we trade off generalizability for depth
in these specific settings, and our results may not apply to other
programming languages or environments.

We used theWizard of Oz technique inspired by previous studies
on chatbots [12, 25]. However, the use of human wizards instead
of automated processing results in a time delay as wizards cannot
replicate computational power. To mitigate this threat, we used
our refined script to avoid delayed answers to the participants’
questions. On top of that, since we were capturing ML-EUPs’ inter-
actions, these were not related to response time.

7 CONCLUSION
“Newton is incredibly helpful for anyone who even has a rudimen-
tary understanding of math and a few machine learning algorithms.
Actually, they don’t even need to be aware of that.” — P3

In this work, we designed a conversational agent–Newton–that
incorporates a set of five strategies recommended to help ML-EUPs.
We evaluated the agent (Newton) via a WoZ experiment with 12
participants. In total, six participants were able to build the ML
model with Newton. Two of them were not able to build the model
without Newton, indicating that the guidance provided by Newton
helped them. Moreover, even though some participants could not
solve the tasks, they perceived the tasks as “less challenging” when
using Newton as compared to when they did not use Newton.

We also observed how participants interacted with Newton. We
noticed that participants liked to follow checklists with predefined
actions, used Newton’s assistance features, and trusted automated
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code generation. Two patterns emerged from the interactions with
and without Newton: backtracking and tinkering. Backtracking oc-
curred when participants explored alternative paths (with and with-
out Newton), was time-consuming, and required multiple search
refinements (without Newton), or when they wanted to continue
the steps from a checklist (with Newton). Tinkering occurred when
participants clicked on several links one after the other, trying to
find information (without Newton), when they got impatient with
wizard’s slowness in response (with Newton), or when they wanted
to explore different paths in checklists (with Newton).

The results reported in this work lay the foundation for future
conversational agents that can support ML-EUPs, and form a step-
ping stone toward a low-code approach to ML. We plan to use
the lessons learned in this study to implement and evaluate an ac-
tual conversational agent by prompt engineering a large-language
model, such as GPT-4. We also foresee using the infrastructure we
built for the Woz experiment in other contexts, such as designing
conversational agents for programming education.

The replication package for this studywith theWoZ script, forms,
Newton implementation, and analysis is available at [5].
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